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The paper presents a 3D method of describing interface with unstructured mesh of 
markers, which is implemented in the MAH-3 code (Anuchina et al., 2004, Volkov et 
al., 2000 ). 
2D and 3D test problems set-up and computed data are presented for comparison 
two methods: method of material mixture concentrations and markers method. 
Algorithms of marker-based control the interface location in time on an Eulerian 
mesh and influence on calculation of convective fluids flows. 
The numerical results show, that the proposed markers method allows the robust 
calculation of the interface location and having less error 

Numerical Method 
MAH-3 code is intended to calculate nonstationary 3D hydrodynamic flows of multicomponent 

media with strongly distorted interface. 
The calculated system depending on a priori information on the problem is presented by a set of 

computational domains. The domain each is a topological parallelepiped. The domain boundaries 
may be contact or external borders of the problem. In each domain one uses a regular, arbitrary 
hexahedral grid of its own (Fig. 1). The radius vector rG  and velocity vector uG  are related to the cell 
vertices, the density ρ , the pressure p , and specific intrinsic energy e  are related to the cell 
geometrical center. The difference method is based on splitting into Lagrangian and Eulerian stages. 

In the method realized in MAX-3 the contact surfaces boundaries are described as the coordinate 
surfaces of the mesh in the area of numerical integration, or with the help of a triangular mesh of 
markers and combined cells, or by the combined cells only. 

In detailed study of the contact boundary evolution the following calculation technology is used: 
• At small distortions of the contact boundary it is described as a Lagrange coordinate 

surface of the mesh;  
• At significant distortions we turn to the description of the contact boundary by means of 

combined cells and Lagrange triangular mesh of markers, which is not connected with 
the mobile Euler mesh of numerical integration area; 
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• In the description of turbulized flows when the contact boundaries are destroyed and 
there appears a zone of mixed matters, we turn to the method of concentrations. 

 

Algorithms of presentation of the surface interface as a Lagrange triangular mesh of 
markers  

In MAX-3 method strong deformations of the matter interfaces are calculated with the help of a 
triangular mesh of markers. The markers show the position of the contact boundary at any moment 
of time. The matter interfaces may cross in an arbitrary way the Euler mesh. Here the combined 
cells are formed which contain several different matters. The mixture calculation is based on the 
conditions of hydrodynamic equilibrium of the components and continuity of the velocity vector at 
the contact boundary. The convective flows in the vicinity of combined cells are calculated with 
account for the direction of the medium flow and the composition of the matters in the cells. The 
matter composition in the cells is determined with the help of the markers. The calculation 
algorithms for strongly deformed contact boundaries with the help of a triangular mesh of markers 
may be divided into two groups: 

• Geometrical algorithms which ensure the creation of an initial triangular mesh of 
markers and maintain its optimacy in the process of contact surface evolution;  

• Algorithms for combined cell processing:  
o Calculation of pressure in the combined cells at the Lagrange stage, 
o Calculation of convective flows at the edges of the combined cells with account 

for the motion of the markers аt the Euler stage. 
 

Geometrical algorithms of the interface as a Lagrange triangular mesh of markers  
Contact boundary presents a 2D surface in a 3D space. A triangular mesh is used for the 

description of the surface. Each nod of the mesh is a marker, and the marker motion is defined by 
the velocity field of the medium.  

x 

z 

y 

Figure 1. 3D view of a regular mesh: a. a mesh fragment; b. a mesh cell 
containing a marker in physical space (x,y,z); c. unit cube in a parametric space 
(ξ,η,ζ). 
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The marker is characterized by an ordinal number m , the marker cell indices ( , , )m m mk j i , the 
Cartesian coordinates ( , , )mr x y zG  and the vector ( , , )mδ ξ η ζ

G
, where ( , , )ξ η ζ  are the local Lagrange 

coordinates of the marker with relation to the marker cell. The relation between ( , , )mr x y zG  and  
( , , )mδ ξ η ζ

G
 is given by triangular mapping of a unity cube (fig.1.c) into 3D physical space, 

represented by a cell (fig.1.b) containing the considered marker: 

1 2 3 4

5 6 7 8

( , , ) (1 )(1 )(1 ) (1 )(1 ) (1 ) (1 ) (1 )

                     (1 )(1 ) (1 ) (1 ) ( , , )

                            where :    0 

m x y zr r r r r

r r r r

= − − − + − − + − − + − +

− − + − + − + ⇒ m ;      

i i i i

i i i i

G G G G G
GG G G G

ξ η ζ ξ η ζ ξ η ζ ξη ζ

ξ η ζ ξ η ζ ξ ηζ ξηζ ξ η ζδ
 1,    0  1,    0  1 ≤ ≤ ≤ ≤ ≤ ≤ξ η ζ

 [1] 

At the Lagrange stage the local Lagrange coordinates of the marker do not change. After the 
Lagrange stage the coordinates ( , , )mδ ξ η ζ

G
 are transformed into the Euler coordinates  ( , , )mr x y zG . 

At the Euler stage after reconstruction of a new mesh we determine the position of the markers with 
relation to the cells of a new mesh, and find new local Lagrange coordinates, which in a general case 
do not coincide with the old ones. 

The edges of the triangles define the relation between the markers at the contact surface, and this 
stipulates the mesh topology.  

The requirements imposed on the triangular mesh of the markers are as follows: 
• two neighboring markers must be located in one mesh cell or in neighboring mesh cells; 
• the mesh should cover all the contact surface by nonintersecting triangles; 
• the mesh should be symmetrical at a corresponding symmetry of the problem (plane, 

cylindrical and spherical); 
• the mesh should be close to a uniform one. 

 
Required quality of the marker mesh is supported for the account:  

• addition of new markers; 
• Re-mapping of the marker triangular mesh. 
  

Creation of initial triangular mesh of markers 
It is assumed that initially the contact boundary coincides with the coordinate surface of the 

mesh and is presented by a regular mesh composed of spatial quadrangles. When the description of 
the contact boundary by coordinate surface is substituted for the description by a triangular mesh of 
the markers the markers are placed into the nodes of a regular quadrangular mesh and geometrical 
centers of spatial quadrangles. 

Figure 2 llustrates the principle of creation of an initial triangular mesh of the markers using the 
already available regular mapping of the contact boundary. 
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Figure 2. Mapping of an initial 
triangular mesh of markers at the 
contact boundary (and a zoomed 
face): 
  a. prior to initialization;  
  b. after initialization. 
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Addition of the marker 
The mechanism of adding of a single marker is shown in fig.3. The edge AB is divided into two 

segments of the same length (AM, MB) and from the additional point M obtained in this way a new 
edge MC is plotted to the opposite vertex of the adjacent triangle. In a general case we have two 
such triangles: ABC и ABD. 

Figure 4 presents an example of adding new markers on the coordinate surface. The following 
criterion is used when adding: distance between two points in the Lagrangian variables should be 
less than 0.5.  

Such a simple formulation of an algorithm of the marker addition does not provide the 
conservation of symmetry of the numerical solution under the modeling of a corresponding 
symmetrical flow. So, the initial algorithm has been added by special procedures of the mesh edge 
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Figure 4. Example of adding new markers (and a zoomed face): 
a. prior to addition;  b. after addition. 

Figure 3. Addition of a new 
marker M. 
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Figure 5. Conservation of symmetry in 2D calculation. 3D view mesh of markers: a., c. - Y=const; 
b., d. - Z=const. a), b) – the requirement of symmetry is met;  c., d. - the requirement of symmetry is 
not met. 
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sorting, and this allows one to meet the requirements on the conservation of symmetry of the 
numerical solution.  

Figure 5 presents the projection of the contact surface onto the plane XZ with the density field 
and triangular mesh of markers for a plane 2D problem in which the solution does not depend on Z. 
The line AB separates two layers of cells over the direction Z. As the problem is two-dimensional, 
the position of the markers with relation to the line AB should be symmetrical. Figures 5а and 5b 
illustrate the calculation results obtained by an algorithm of marker addition, which conserves the 
symmetry of a numerical solution. Figures 5c and 5d show the results obtained by an algorithm in 
the initial formulation. 

Re-mapping of the marker triangular mesh 
 In the calculation process the triangular mesh can become nonuniform. In this case the marker 

mesh is re-mapped. An algorithm of re-mapping is a local one and realizes the displacement of the 
markers in the tangent plane to the interface surface in order to equalize the distance between the 
neighboring markers.  

Figure 6. Remapping of M marker (for an 
arbitrary fragment of the triangular mesh): 
а.  marker and all the triangles having M as a 
vertex; 
b. Displacement vector Sd

G
ABM  of M marker 

obtained from ABM triangle. 
а) b) 

M

T
A B
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Fig. 6 shows as displacement vector of M marker obtained. Fig. 7 shows an interface between 
two substances covered by an triangular mesh of markers that is calculated without remapping (a. 
amount of markers is ≈6,500), and with remapping (b. amount of markers is ≈2,500). 

 

Processing of mixed cells 
Topology of the marker triangular mesh given at the interface defines a direction of the normal. 

It makes the interface oriented and separates the left part of the space from the right with respect to 
the normal. Each interface divides the concrete matters. The direction of the normal allows to know 
from which side of the interface one or other matter is situated. 

The matter composition of each mixed cell is defined. Each matter of the mixed cell i  is 
characterized by the volume concentration iσ , mass iM , and specific intrinsic energy ie . 

Calculation of pressure in mixed cells at the Lagrangian stage 
For mixed cell the total pressure and intrinsic energy of the matters of mixture are defined by a 

single-velocity model of a multi-component medium and the conditions of joint deformation of the 
components. 

Let N  matters be in a cell. For each matter i  we know the mass iM , the specific intrinsic energy 
ie , the fraction of the volume iσ , occupied by the matter in the cell volume V , and the equation of 

state of the matter ( , )i i i ip f eρ=  is given, where /( )i i iM Vρ σ= ⋅  is the density of the matter i  in the 
cell. 

In order to calculate all the values in the mixed cell at the Lagrangian stage one should 
determine the pressure. In the pressure calculation we make use one of the following assumptions: 

• the compression of all the mixture components should be equal; 
• all the matters are of the same pressure. 

In the case of the explicit difference scheme under the first assumption, and from additivity of 
the total intrinsic energy of the components it follows that: 

a) b) 

Figure 7. 3D view of unstructured triangle mesh covering the interface: a. mesh calculated 
without remapping; b. mesh calculated with remapping. 
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.i i
i

p pσ= ⋅∑         [2]  

Under the second assumption the pressure p  and iσ  are defined by the following system of 
equations: 

1 2 ... ,
1,

( /( ), ),

N

i
i

i i i i i

p p p

p f M V e

σ

σ

= =

=

= ⋅

∑          [3] 

which is solved by an iterative method. 
If at the Lagrangian stage the implicit difference scheme is applied, the relationships above for 

determining pressure in the mixed cells are introduced into the iterations. 
Calculation of convective flows at the faces of mixed cells with account for the marker 

displacement 
At the next time the matter composition in the cells is determined by the analysis of the marker 

positions relative to a new Eulerian grid. 
Each marker entering the cell of the new grid supplements its composition by the matters, which 

are separated by the marker surface. If all the markers come out of the cell, then, may be, only one 
matter will stay in the cell. This matter will be the same as in the nearest neighboring non-mixed 
cell, if such exists. For analysis we take only those cells, which have a common face with 
considered cell. If the cell does not contain markers, and the markers have not entered the cell, the 
matter composition is not changed.  

The convective flows are calculated only between the cells having a common face. So, it is 
necessary to define the flows through six faces of the cell. 

For each cell A  we find the volume variation Vαδ  (Fig.8) caused by the motion of the face α  
resulting from the grid modification. In the case shown in Fig.8 the flow comes from the cell A  into 

the cell B . In calculations it is convenient to determine only the outgoing flows for each cell. 
At the beginning we define the matters participating in the fluxes and the change of their 

volumes. For the cells A  and B  both the old and new matter compositions are known. The flows 

Figure 8. Calculation of flows between the cells A and B. 

A B 
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from the cell A  to the cell B  are calculated for only those matters, which are contained in the cell 
A , and will be contained in the cell B . 

For each matter i , flowing out from the cell A  through the face α , it is necessary to determine 
the volume variation iVαδ , so that i

i
V Vα αδ δ=∑ . At first for the matter i  the preliminary values iVαδ �  

are found: 

' '
' '

0.5 .iA iB
i

i A i B
i i

V Vα α
σ σδ δ
σ σ

 
 

= + 
  
 
∑ ∑

�           [4] 

Here iAσ  and iBσ  are the volume concentrations of the matter i  in the cells A  and B  obtained at 
the Lagrange stage. The summation is made for all the matters flowing out from the cell A  to the 
cell B  through the face α . 

After calculating the iVαδ �  for all the matters flowing out through all the faces of the mixed cell 
A , the situation is possible when the calculated volume of some matter flowing out from the mixed 
cell A  exceeds the volume of the matter in the cell A , or is insufficient to remove any matter from 
the cell, although this component should not be present at the next moment of time. So, the iVαδ �  are 
corrected to obtain the final values of them. The correction is made by a redistribution of the 
volumes of flowing out components. 

After this correction the convective flows of the mass, total energy and pulse are calculated 
separately for each component. 

Calculation of convective flows at the faces of mixed cells by concentrations 
In the description of turbulent flows, when the interfaces are destroyed and mixture of matters is 

formed, the method of concentrations is applied. In this case the algorithms for determination of 
iVαδ  are essentially simplified and are reduced to the following. 

Initially only those matters contained both in the cell A  and in the cell B  at the current time 
flow out from the cell A  to the cell B . When volume of some matter calculated for all the faces 
exceeds its volume in the mixed cell A , then the preliminary obtained volumes of the matter are 
corrected at the expense of the volumes of other matters flowing out from the cell. If the latter is not 
a success then the rest components of the mixed cell are used. 

Comparison of Marker and Concentration Methods 
Problems of two types were calculated to compare two interface reconstructing algorithms, one 

of which is based one the concentration method and the second uses markers (i.e., an unstructured 
mesh of markers which move in accord with the convection flows calculated.  

These included: 
(1) Heterogeneous translational motion; 
(2) Homogeneous translational motion. 

All test problems have exact solutions. 
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Heterogeneous translational motion 
In the calculations with the use of Eulerian methods the contact boundary (if it is not a 

coordinate surface) in its motion crosses the difference mesh. Here the mixed cells are formed, i.e. 
the cells containing several matters. The accuracy of the methods depends on the algorithms of 
calculation of convection flows through the mixed cell boundaries. 

Interesting model problems for the comparison of different numerical methods of such type are 
proposed in (Rider and Kothe, 1998) for two space variables. The problems are generalized for the 
case of three spatial variables. 

The problems have been calculated by МАХ-3 code in order to compare the algorithms 
describing of the strong distorted interfaces: with the markers, and with the concentrations only. 

Model problem for the case of two spatial variables 

The motion of the points of a square 1,0 ≤≤ yx  with the velocity of ( )vu,υ
G  is considered:  

 
( ) ( ) ( )

( ) ( ) ( )

2

2

sin sin 2 cos

sin sin 2 cos

u x y t T

v y x t T

= − π π π  

= π π π  
        [5] 

It is seen that at the square edges  0== vu , and the motion is periodic with the period T .  At  
Tt =  all the points return into the initial position. If at the time moment 0=t  we take a set of 

points at any curve and trace their motion then, in the process of motion, the curve is strongly 
deformed. Fig.9 illustrates the change of the circle shape during the motion. The greater is Т, the 
stronger is the deformation. For example, at 8=T  during the motion the circle takes form of a 
spiral. 

In МАH-3 simulation the formulation of the problem is as follows. Within the square 
1,0 << yx  with the rigid walls we consider the motion of a homogeneous incompressible liquid  

( )0=υGdiv  with the above noted velocity ( ),u vυG . The liquid parameters: .1,0 == ρp  In the liquid 
we separate an area where the boundary presents a circle with the radius 0.15 and the center at the 
point ( )75.0;75.0 . We assume the circle to be the contact boundary between two matters. 

The calculations with МАH-3 have been performed, using immobile square mesh with different 
number of points ( )222 128,64,32 , for 2=T  and 8=T (fig.10). A peculiar feature of the problem 
lies in the fact that one needs to calculate only the mass flows through the boundaries of the mixed 
cells. 

Figure 9. Change of the circle “form” for  T=2, 4, 8: 
       - t=0, t=T;           - t=0.25T, t=0.75T;          - t=0.5T . 

T=2.0 T=4.0 T=8.0
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Figures 11-12 demonstrates the results obtained from the calculations by the “MM” method, 
which uses the marker lines for the description of the contact boundary, and the results from the 
method of concentrations “MC”. The mixed cells, which appear in the calculation, are shown, as 
well as the circle deformations obtained in the exact solution. In the “MM” calculations they 
coincide with the deformations of the marker lines. 

322 642 1282 

   
 
 
In these calculations we tested convergence (see Tables 1, 2).  At first we estimated the relative 

error of the volume concentration calculated for the second matter (Fig.16) with the formula 
1 computed exact

, , 2 2, , , ,
,2

1L
i j k i j k i j kexact

grid k fix

E V
V

σ σ
=

= −∑ , where exact
2 , ,i j kσ and computed

2 , ,i j kσ  are its volume fractions in the 

(i, j, k)-cell at the initial and terminal times, and , ,i j kV  is the volume of this cell.  The convergence 

exponent α  was calculated from the errors 1
1
LE and 1

2
LE  for two different meshes spaced at steps 

1h  and 2h .  Since 1
1 1= LE hα^  and 1

2 2= LE hα^ , where ^  is a constant, then 
1 1

1 2 1 2= log ( ) log( )L LE E h hα . The relative error was estimated for the calculated volume of matter 2.  
computed exact exact

2 2 2 2( ) /V V V V∆ = − , where 2
exactV  and computed

2V  are total initial and final volumes of 
matter2, respectively. 

 

Table 1. Relative error of the matter 2 volume concentration, convergence exponent, and the 
relative errors in calculations for 2T =  with marker (MM) and concentration (MC) methods 

Error 1LE  α  Error 2V∆  Mesh 
MC MM MC MM MC MM 

322 0.15572 0.03339     3.532533e-004 -1.101678e-002 
   0.9641 1.2247   

642 0.07982 0.00789   1.834880e-004 -3.460807e-003 
   0.8479 1.5159   

1282 0.04435 0.00185   9.011707e-005 -1.229808e-003 
 
 
 

Figure 10. Initial liquid field for different number of points 322, 642, 1282 
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Fig.11. The results of “MC” calculation at 8T =  with the number of points 322, 642, 1282 at the 
moments t = 0.5T,   t = T.      - matter №1;      - matter №2;      - mixed cells;       - exact solution.  

Fig.12. The results of “MM” calculation at 8T =  with the number of points 322, 642, 1282 at the 
moments t = 0.5T,   t = T.      - matter №1;      - matter №2;      - mixed cells;       - exact solution.  
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Table 2. Relative error of the matter 2 volume concentration, convergence exponent, and the 
relative errors in calculations for 8T =  with marker (MM) and concentration (MC) methods 

Error 1LE  α  Error 2V∆  Mesh 
MC MM MC MM MC MM 

322 1.1372 0.08308   2.561617e-003 -1.832234e-002 
   0.6025 0.9577   

642 0.7490 0.04278   7.663488e-004 -5.355104e-003 
   0.3715 0.9785   

1282 0.57897 0.02171   4.112564e-004 -1.048725e-003 
 
Model problem calculation for the case of three space variables 
In the cube 1,,0 ≤≤ zyx  with the rigid walls there is an incompressible homogeneous liquid 

with the parameters .1,0 == ρp  The sphere with the radius 0.15 and the center at the 
point ( )75.0;75.0;75.0   is assumed to be an interface separating two matters. The matter number 2 is 
inside the sphere, and the matter number 1 is outside the sphere. 

The liquid moves with the velocity ( )wvu ,,υ
G :   

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2

sin sin 2 cos

sin sin 2 cos

2 sin sin 2 sin 2 cos ,  i.e. 0.

u x y t T

v y x t T

w z x y t T div

= π π π  

= π π π  

= − π π π π υ =  
G

     [6] 

In the comparative calculations performing by MAH-3 code with 2T =  and 8=T  an 
immovable Eulerian grid in which the number of cells equal to 332  was used. 

Figures 13-15 show the initial distribution of the sphere matter and calculated results. 

             
 
 
 
 
 
 

Figure 13. Initial sphere matter distribution: a) mixed cells; b) marker surface; c) isosurface with the 
volume concentration of the second matter 23.0=σ  

a)  b) c)  
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The comparative calculations show that the calculation diffusion with describing the interface by 

the marker surfaces is essentially smaller. In the method of concentrations a rather difficult problem 
is to reconstruct the interface position by the concentration field. In the considered calculations the 
problem is simplified by the fact that the exact solutions are known. A series of tests in the 
processing of 3D calculations (“MC”) at  2=T  gives a rather good agreement with the exact 
solution, if we assume as a contact boundary an iso-surface with the volume concentration of the 
second matter 23.0=σ . For  8=T , where the deformations are stronger, the same processing gives 
much worse results. 

In these calculations we also estimated the relative error in the calculated volume concentration 

of matter in the sphere  1 computed exact
, , 2 2, , , ,

2

1L
i j k i j k i j kexact

grid

E V
V

σ σ= −∑  and the relative error in the calculated 

volume of the sphere computed exact exact
2 2 2 2( ) /V V V V∆ = −  (see Table 3). 

Table 3. Погрешности при расчете сферического жидкостного тела, помещенного в 
обращаемое по времени течение с периодом T  на момент времени t T=  для расчетов по 

методу концентраций (MC) и методу маркеров (MM) 
Problem Errors 1LE  Errors 2V∆  

MC 0.37922237 +8.629715e-004 2T =  
MM 0.12949270 -2.562035e-002 
MC 1.40545132 +6.825963e-003 8T =  
MM 0.26338374 -8.044026e-002 

However, it should be noted that there are the problems where the method of concentrations 
gives acceptable results. For the problems with strong deformations of the contact boundaries it is 

Fig.15. The results of “MM” calculation at 8T = :  
a - mixed cells; b - marker surface. 

Fig.14. The results of “MC” calculation at 
8T = : a - mixed cells; b – surfaces where the 

volume concentration of the second matter is 
0.23σ =   
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best to use a set of different algorithms of description. As noted above, such a possibility is realized 
in МАХ-3 complex. For example, in studying the instability development at the matter interface the 
following technology is used: the contact boundary is described by a coordinate surface at small 
deformations, at strong deformations – by the marker surface, and at boundary destruction and 
matter mixing – only by the concentrations. 

Homogeneous translational motion  

Model problem for the case of two spatial variables 
The square 0 400x< < , 0 400y< <  contains two matters of the same pressures 021 == pp , 

but different densities 10,1 21 == ρρ .  

The initial geometry of the second matter - is a square 40x40 with the beginning in a point 
(80, 80). 

We considered the matter motion with a constant velocity: 

For the first calculation, ( )0 1,0u =
G  - the motion along the (mesh) line up to the moment t = 200; 

For the second calculation, ( )0 0.7071,0.7071u =
G  -  the motion along the main diagonal up to the 

moment t ≈ 212.132.  

At some of the square edges the matter inflow with the velocity 0uG  was given, and he matter 
outflow was given through other edges of the square. 

The calculation was performed in immobile cubic Eulerian mesh with the cells size 5x yh h= = . 
The interface was described by the marker surface. 

EOS: Ρ = 0;  time step  ≈ 0.1 , i.e.,  0.02u hτ ≈
G i , where uG  = velocity, τ  = time step, h  = cell 

length. 
Two calculations were done in the same setup but with another geometry of the second material 

defined as a circle of radius R=25 centered at ( )100,100 . 

In these calculations we estimated the relative errors in the calculated volume concentration of 

the second material: 1 computed exact
, , 2 2, , , ,

,2

1L
i j k i j k i j kexact

grid k fix

E V
V

σ σ
=

= −∑ , where exact
2 , ,i j kσ  and computed

2 , ,i j kσ  are 

volume fractions of material 2 in the (i, j, k)-th cell at initial and final times, , ,i j kV  is the volume of 

this cell, and the relative error in the calculated volume of material 2  computed exact exact
2 2 2 2( ) /V V V V∆ = − , 

where 2
exactV  and computed

2V  are the total initial and final volumes of material 2, respectively. 

Results obtained with concentrations (MC) and markers (MM) are compared in Table 4 and 
Fig.16, where:  

A) – the motion of the square along mesh lines;  

B) – the motion of the circle along mesh lines; 

C) – the motion of the square at an angle to mesh lines; 

D) – the motion of the circle at an angle to mesh lines. 
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Table 4. Errors 1LE  and 2V∆  at the final moment 

Problem Errors 1LE  Errors 2V∆  
MC 0.04845338 0 A) 
MM 1.2500e-008 0 
MC 0.09840140 -3.700217e-006 B) 
MM 0.03411712 -1.705050e-006 
MC 0.32989223 0 C) 
MM 0.01542336 -0.00468230341 
MC 0.13162436 0 D) 
MM 0.03880181 -0.02768624309 

     

Model problem calculation for the case of three space variables 
The cube 2,,0 << zyx  contains two matters of the same pressures 021 == pp , 021 == pp , 

but different densities - 10,1 21 == ρρ . The initial geometry of the second matter presents a sphere 
of the radius of 0.15 and the center in the point ( )0.25,0.25,0.25 . We considered the matter motion 
with a constant velocity:  

For the first calculation, ( )0 1,0,0u =
G  - motion along mesh lines till t=1; 

D)   MC 

Figure 16. Homogeneous translational motion in 2D case. Matters field, mixed cells 
(black) and markers (white) at t = 50 and at the termination time.

C)   MC 

D)   MM 

C)   MM 
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For the second calculation, ( )0 0.5775,0.5775,0.5775u =
G  - motion at an angle to mesh lines 

(along the main diagnal) till t=2.5.  

At some of the cube edges the matter inflow with the velocity 0uG  was given, and the matter 
outflow was given through other edges of the cube. 

Calculations were done with a fixed cubic mesh 646464 ×× . The interface was described by a 
marker surface. 

Two 3D calculations were done in the same setup but with the following modifications: 
integration region 350,,350 << zyx ; material 2 was shaped as a cube 40,,40 ≤≤ zyx ; the first 
calculation was run to t=200 and the second one to t=300.  

Calculations were done with a fixed cubic mesh 707070 ×× . The interface was described by a 
marker surface.  

Figure 17 shows results for the motion along the main diagonal. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.17. Position of the interface (presented by a marker mesh) at different times for the motion along 
the main diagonal (the initial geometry of the second matter presents a sphere). 

 
In these calculations we estimated the relative errors in the calculated volume concentration of 

the second material: 1 computed exact
, , 2 2, , , ,

2

1L
i j k i j k i j kexact

grid

E V
V

σ σ= −∑ , where exact
2 , ,i j kσ  and computed

2 , ,i j kσ  are volume 

fractions of material 2 in the (i, j, k)-th cell at initial and final times, , ,i j kV  is the volume of this cell, 

and the relative error in the calculated volume of material 2  computed exact exact
2 2 2 2( ) /V V V V∆ = − , where 

2
exactV  and computed

2V  the total initial and final volumes of material 2, respectively. 

Table 5 contains results obtained with concentration (MC) and markers (MM):  

A) – the motion of the cube along mesh lines;  

t=0.0

t=1.25 

t=2.5 

YX

Z 
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B) – the motion of the sphere along mesh lines; 

C) – the motion of the cube at an angle to mesh lines; 

D) – the motion of the sphere at an angle to mesh lines. 

Table 5. Errors 1LE  and 2V∆  at the final moment 

Problem Errors 1LE  Errors 2V∆  

MC 0.04587 0 A) 
MM 1.7278e-005 0 
MC 0.15116 0 B) 
MM 0.12405 0 
MC 0.65902 0 C) 
MM 0.04358 -0.01365 
MC 0.90081 0 D) 
MM 0.11380 -0.026589 

Conclusion 
Our calculations show that despite some shortcomings (longer (1-20%) computation time) the 

method of markers offers some advantages. 
The method of markers reconstructs interfaces very accurately. 
It tracks volumes more accurately and improves the convergence exponent approximately by a 

factor of 1.5. 
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